Hall	Tic	ket N	Jumb	er:					
								Code No.: 17356 C)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VII-Semester Backlog Examinations, Dec.-23/Jan.-24 Digital Signal Processing

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

 $Part-A (10 \times 2 = 20 Marks)$

	Turi-A (10 \ 2 - 20 Marks)				
Q. No.	Stem of the question	M	L	СО	PO
1.	List the advantages of digital signal processing over analog signal processing.	2	1	1	1,2,3,12
2.	Differentiate zero input response and zero state response.	2	2	2	1,2,3,12
3.	Differentiate Discrete Fourier Transform with Fourier Transform.	2	2	2	1,2,3,12
4.	List the properties of Discrete Fourier Transform.	2	1	2	1,2,3,12
5.	Draw the frequency response of an ideal low pass filter.	2	2	4	1,2,3,12
6.	List the specifications of a filter.	2	1	4	1,2,3,12
7.	Define group delay.	2	1	4	1,2,3,12
8.	Write the equation for rectangular window function.	2	2	4	1,2,3,12
9.	Name the software used to write coding for TMS320LF2407 DSP controller.	2	1	5	1,2,3,12
10.	Compute the voltage gain of a DC-DC buck boost converter when duty ratio is equal to one.	2	2	5	1,2,3,12
	Part-B $(5\times8=40 Marks)$	- da			
11. a)	Test the properties casuality, linearity, shift invariance and memory for the system $y[n]=x[n^2]+x^2[n]$.	4	3	2	1,2,3,12
b)	Determine the step response of the causal system $y[n]-y[n-1]=x[n]+x[n-1]$	4	3	2	1,2,3,12
12. a)	Compute Fast Fourier Transform of the signal $x[n]=\{1,1,1,2,2,2,3,3\}$	4	3	2	1,2,3,12
b)	Explain how to determine linear convolution of two signals using Discrete Fourier Transform.	4	1	3	1,2,3,12

Code No.: 17356 O

:: 2 ::

13. a)	The system function of an IIR filter is $H(s) = \frac{4(s+2)}{(s+3)(s^2+2s+5)}$. Obtain the system function $H[z]$ using bilinear transformation.	4	3	4	1,2,3,12
b)	Realize the direct form–I for the system described by the difference equation $y[n] = -0.7y[n-1] - 0.9y[n-2] + 2x[n] + 0.3x[n-1] + 0.5x[n-2]$	4	4	4	1,2,3,12
14. a)	Design an FIR filter with frequency response $H(e^{j\omega}) = \begin{cases} 1 & \text{for } -\pi \leq \omega \leq 0 \\ -1 & \text{for } 0 \leq \omega \leq \pi \end{cases} \text{ using rectangular window. Assume } N=11.$	4	4	4	1,2,3,12
b)	Obtain the frequency response of an FIR filter with symmetrical impulse response and odd length.	4	2	4	1,2,3,12
15. a)	Explain about multiplexing in TMS320LF2407 DSP controller.	4	1	5	1,2,3,12
b)	Explain about the peripherals Event manager, Joint Test Action Group Port, Control Area Network and Watchdog timer in TMS320LF2407 DSP controller.	4	1	5	1,2,3,12
16. a)	With a block diagram, explain how a continuous time signal is processed using a digital signal processor.	4	2	1	1,2,3,12
b)	Compute circular convolution of the sequences $x[n]=\{1,3\}$ and $h[n]=\{2,1\}$	4	3	3	1,2,3,12
17.	Answer any <i>two</i> of the following:				c.Terus
a)	Compare Finite Impulse Response filter with Infinite Impulse Response filter.	4	2	4	1,2,3,12
b)	Realize a linear phase FIR filter whose impulse response is given as $h[n]=\{1, 2, 3, 2, 1\}$	4	3	4	1,2,3,12
c)	Explain how a DC-DC buck – boost converter is controlled using TMS320LF2407 DSP controller.	4	2	5	1,2,3,12

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	27.5%
ii)	Blooms Taxonomy Level – 2	32.5%
iii)	Blooms Taxonomy Level – 3 & 4	40%
